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INTRODUCT ICN

The wunrk nraecantad hare {e ralatsd tn uvarinue nrohlame consarnad wich
the propagation of shock waves, mainly imploding spherical and cylindrical
shock waves, in water and (in part) in gases.

In Section 1 the relevant equation of state for water is presented and
the following section deals with the consequences of this equution on shock
wave trangitions,

Section 2 I8 concerned with the self-similar solution valid inm the final
stages of collapsc, where the shock may be consldered to be infinitely strong
so that the pressure ahead, and more important, a pressure term in the equa-
tion of state mcy be neglected. Numerical results are given for the expo-
nent in the power law for the shock speed, In the following section a
perturbation on this solution, linearized in terms of the previously neg-
lected pressure terms, is evaluated. In effect this extends the range of
validity of the self-similar solution further away from the collapse point
or axis. The work of these two sections is closely related to the propaga-
tion of shocks and detonations in gases (Welsh, 1966), where a much fuller
account is presented.

An approximate solution for the shock motion from the time of its
initiation to its final collapse is given iu Section 5, the method employed
being similar to that used by previous authors (Chester, et.al.) for the
motion of a shock wave in a non-uniform tube.

‘The final section is devoted to the exact, linearized solution for the
initial motion due to the release of a spherical diaphragm separating two
uniform regions at different pressures, The analysis is applicable to
1) spherical or cylindrical geometry, 1i) high pressure in the interior or

exterior, and 11i) any combination of gas and water for the two media. i




1. EQUATION OF STATE FOR WATER

In the classical theory of hydrodynamics the compressibility of water
1s neglected, due to the relatively low order of magnitude of the pressure
variations invelved., However, when water iz cubjected to cxtremely high
pressures, as, for instance, in an explosion, the compressibility cam no
longer be neglected, 1In such a situation the Talt equation of state 1s
known to give an adequate representation of the compressibility (Cole, 1948).

This equation relating pressure, entropy, and density can be expressed as

4
p + B(s) = B(s) (%T) (1.1)

B(s) 1is a slowly varying function of entropy s and has the dimensions of
pressure. p' {s the (finite) value of the density for which the pressure
p 18 zero, 7 1is dimensionless and approximately constant. With B(s)
taken to have the conmstant value 3,047 kilobars and 7 taken ns 7.15 the
above cquation of state gives a good approximation to the behavior of water
at pressures up to 100 kilobars. Here we shall take 7 = 7,

Defining the sound speed of water c¢ by

- (%),

we obtain froml(l.l)

7-1
c2 =  B(s) E-T—
po
- ﬂﬂg—‘sll (1'2)

p % e o (1.3)
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where
Y = adiabatic indices

¢ = specific heat at constant volume,

which gives

¢ = (%5)5 - %E' (1.4)

If we assume that the function B(s) in (1.1) has the constant value
B and that p 1is sufficiently large that we may neglect B on the left

hand side of (l.1), then the equatioan of stute for water is simply

p = o

which is the equation of state of (1.3) for a gas when the entropy 1is
uniform, i.e., the motion is homentropic. Also the sound speed (1.2)

reduces to
2 . 12
P

so that the motion of water at sufficiently high pressurcs may be treated
as that of a gas with 7 = 7, neglecting the effect of any variations in
entropy. Hewever, p must not be so large that (1.1) is not valid,
These simplifications will be used in evaiuvating the self-gimilar solution
for the final ¢ollapse of spherical shock wave.

Thet? are evidently three distinct ranges of pressure. The first for
p << B corresponds to incompressible flow. The present work will be con-
cerned with the remaining two, i.,e., p~B and p>> B, B will be
assumed constant.

We shall later require an expression for tue specific internal energy

of water, defined by

.




2 = -/ nd{l\
J \pP/
2
C B c
- 7(7_1)4"—)- (1.5

2. SHOCK TRANSITIONS

The propagation of a shock wave in water is governed by the mechanical
laws of conservation of mass, momentum, and cnergy. The shock is assumed
to be a discontinuity in the flow variables, viscosity and heat conduction
being neglected. Also the relations between the flow variables on either
side of a plane shock will be used for curved shocks, under the assumption
that the width of the shock is negligible in comparison with its radius of
curvature.

With the subscript o denoting the variables ahead of the normal

shock, the variables behind it are given by the three conservation laus

p(U-u) = oo(U-uo) ’
2 2
p+p(U-u)” = p +p (U-u) ,
2
2 < __ . B
(U u) + L4 o l) o
P < 2
1 2 o o __ . B
= 5 “o) +3 "7(7-1)"'9
o 0
or
2
2 c
1 2 c 1 .. v2 ‘o
g W+ 577 = 7 Uu)” + 377
Also the second may be written
2 2 U-u 2 + 702)

¢ +7(U-w)" = = (c°
¢
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so that B does not appear if the equations arc expressed in terms of u,
¢, P, in which case they coincide with those for a gas. We shall take

u =0,

The solution in terms c¢ff the pressure ratio z = p/po is

f;z-‘—;- + (7-1) + (r+1)z
e . -2
Py LB (r+1) + (7-1z
pO
4 P P
f, P Py
@ - o | (z=1)
b, B, I:L. 7AL
P 2 2
(o]
P P
r+1)%c2 w LB pluye1) + % 249001 2,
) p P
[+] o o
. 2%0-1) (7 +®)
o 7B + Z%— P, + Zil P2

The special case B = 0 corrcsponds to a gas.

In terms of the Mach number M = U/co the variablea behind the shock

are
e....(Zle.z_
s (7-1)M%+2

2c° 1
“ o= <§ ~ iﬁ) ’
2

B . M -7+l .ZZ. B 2.
P 741 Tl p. ML) ’
[} O
2 o2 1 2 2
0+1)° =5 - =5 (27M°=(7-1) [ (7-1)M"+2) .
¢ M
¢}

|



The shock Mach number M 1n terms of the pressure ratio is

. MY e 1 —ZHL )y
27<1+B—\
/

‘0

Since po/B = 1/300, 4if the water is initially at atmocpheric pressure,

the factor multiplying 2 - 1 4. approximately 5.103. Hence M does not

e

differ greatly from unity unless 2z is of corresponding order of magnitude.
In the limit a8 z- 1, M- 1 and

’ 7(p +B) 7p
u —p [ - ——O— >> -—o
o Py P

o

so that a very weak chock, wbich is approximately sonic, travels at a much
greater speed than a weak shock in a gas, but it requires a much greater
change in pressurc ratio to increase the speaed of the shock wave in water

appreciably.,

Strong Shock Relations

; A uscful simplification of the conservation equations for a shock wave
in a gas is obtained by assuming that the shock is 'strong' so that the
pressure ahead may be neglected in comparison with the pressure behind.
This simplification is essential in obtaining self-similar soluticns in-
volving shock waves whose speed is non-constant. In the case of water,
identical strong shock re}ations may be obtained, but under the more severe

restriction that not only is p >> Fo but also p > B, These are

e. . I+l
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3. SELF-SIMILAR COLILAPSING SHOCKS

The sclf-similar solutfon for the final stages of a collapsing spher-
ical shock wave in a gas is well known (Guderley, 1942). A simtlaricy
hypothesis is obtaincd by using the strong shock relations, so :jkt at
any instant the flow is determined only by the radius of the shock and
the initial density of the gas, apart from scaling factors.

The equations governing the symmetric motion of a perfect, inviscid,

non-heat-conducting gas are

¢ 2
g; (utke) + (ude) ga (utke) = + AEE + & g%

Y
?é"“u%&-o

where k = 2/(7-1), @ = s/[cv(7—1)], where s 16 specific entropy, and

(3.1)

j =1 for cylindrical symmetry, 2 for rpherical symmetry. The appropriate
equations for water arc the above, neglecting entropy variations, and so

are

a -
S¢ (utkc) + (u*c) gi (utke) = + i;i (3.2)

No dimensional constants appear in these equations so that “he shock
speed U is dependent only on the radius coordinate A of the shock

front, the time t, and the densicy P Hence,
A

» -

v t

ioe-. ¢ « 751/CZ

or U o« aAl-(1/e)
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and, by suitable choice of length scale,

u

- - Kl(l/a)

Due to the form of the strong shock relations, the flow is self-

similar with similarity variqplew
¢ = 't17a
aR
and the dimensionless fluid velocity and sound speed r, s defined by
t t
r = TR ’ 8 aRC

arve of the form
r = r(t) , s = s(§) s

so that the equations of motion are

ln.
+

(rtks) = =

£ d 1-x+s

v

where

b, = {1-a(rxs)) (rtks) + jars

We can eliminate § from these equations and consider r as a function
of s given by -

(1-r+s)b+ + (l-r-s)b_
’ (1-r+s)b+ - (l-r-s)b_

F T
&lF
[

2 .
_ 1, r(e-D@r-1) + s7(k(Q1-a)-a(i+D)r] (3.3)

(1-r)[k41(j+k+1)r] + r(l%zr)-k!sz

The parameter Q 1is as yet unknown and is determined, as in the

Guderley solution, by the condition that the flow is regular on the
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negative characteristic which reaches the center of symmetty at the same
ins:an:,» t - 0 as the sho?k wave. On this 1ine r= L+s and the
regulatity condition is simply :b - O‘Kor r= L+s. The solution has

to satisfy this regularity condition, at 8= 8, say, and the conserva-

tion cquations at the shock whete

. 2
7+1
s--—zm

7+1

I1f we seek a regular expansion for r(s) about s ='s,, say
r = r +r (8'5 ) + e o o+ 1T (8"8 )n + e o o o
o 1 o ' n o

then ry r, are the solutions of quadratic equations. The roots for r,

are real in some range @, <& <1 say, and the roots for r, will also

R 1
be real unless this singular point (ro,so) in the r-s plane is a
spiral. Thus, there are in general four solutions which are regular on
the limiting negative characteristic. The selection of the solution is
decided partly by trial and error by computation and partly by the behavior
of the integral curves of the equation (3.3) to be discussed later.

In order to integrate the equation (3.3) a similar procedure to that
used previously (Welsh, 1966) was adopted. In this the regular series
solution is developed iteratively, without evaluation of the actual
coefficients, from the 1. n. c. s = s, to the shock s = -E, and the
discrepancy there noted. The actual solution and the appropriate value
of & may then be evaluated by trial and error.

| Exact results were found by this method and are given in Table I for
twelve cases, j=1 and j=2 and 7 = 6/5, 7/5, 5/3, 3, 5, 7.
In the case of a gas the extremely simple, approximate evaluation

of & given by Whitham (1958) gives remarkable accuracy. The method




10
is applicable here and consists of applying the characteristic condition
to he satisfied by the variables on the 1. n. c. to the values at the

e - - . . L TR iy - wn - - - o~ -
shiock., The cliaracteristic condlition is

. Juc @R
d(u-ke) = R de on 3t u-¢

oand on the shock

o o2 ole(l/®)
u 74l }

c = ER]-'(l/a)

and substitution of these into the characteristic condition gives

L1, - JDE 2
a (DHE) (D+KE)  * b = 7T (3.4)

which is tabulated as aw along with the exact results. The relation be~
tween aw and the exact value is apparently more systematic than for the
case of a gas, in which entropy variations occur. In all cases a, lies
betwecen ap and the exact values which are themselves never far apart,

and the accuracy increases with decreasing 7. For 7 = 1, a; =1 as

is the exact value., For this special case the shock is in fact a character-

istic. Also, the internal energy is infinite, causing the collapse to be

uniform,

The Integral Curves and the Reflected Shock

The equations (3.3) apply to the homentropic self-similaxr flow of a
gas or the self- similar flow of water, under the present assumptions, They
are identical to those used by Hunter (1960,1963) for the collapse of an
empty spherical cavity in water, apart from his use of the dimensionless
square of the sound specd, We shall now consider the behavior of the

integral curves of (3.3).

RN A e ene e snb -
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Due to the Similarity of the flow the variabics are functions of §
only, The physical R-i plane may be considered to be made of lines (para-
bolas) & = constant. The shock is § = -1 and £ < ~1 1is the stationary

region ahead of the shock. The speed of a line

t
g ;—-—17& = constant

R
is
. R
R - t Ll

Hence the nondimensionalization of the variables wu,c to r,s ig with
respect to the speed of the line ¢ = constant, and such a path in the

R-t plane gives rise to a point in the r-s plane. The shock front trans-

forms into the point

r = 2 s = 'JZ -1
7+l ? 7+1

Negative values of s correspond to negative valucs of t, i.e., to the
imploding phase, and positive values of 8 describe the expanding phase.
The positive and negative characteristics of the flow each correspond to

a point on the lines r = 1+ s, respectively, on which dr/di, ds/d¢

are singular in general. Any physical solution must have ¢ increasing

. throughout the associated integral curve in the r-s plane. In general

the direction of increasing time on the integral curves in the r=-s plane
changes on crossing r = 1 ¢ s, In other words, a physical solution cannot
in general crogs these lines. However, the appearance of singular points
of the equation (3.3) for dr/ds on r = 1 * s provide the means of
crossing these Jines, In effect, the singular points cause another change
of diraection, <ancelling that appearing already. The regularity condition

mentioned privisusly is in fact the condition for a regular solution through

A o
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one of these singular points, For a < a these points do not appear. for
&= ap they coincide, and for a> o they are real and distinet, If r
is real then there is the possibility of a regular solution through the
singular point, which is either a node or a saddle. 1If T, is imaginary

then the point must be a spiral.

The fin{ite singular points of (3.3) are as follows:

P(0,1), Py(s,,,1+5.), Py(s _,i¥s ), P, (0,0)

k 1
94(0,0), PS <s, m) ’ P6 (0, a)

and three other points which are the mirror images of PZ’ P3, Ps in the

r-axis. Both 8 , <0, and S 1is the negative root of

o
sz - r(l-a r) r = k
k a ’ a(j+k+l)

Pa is always a degenerate note and Pl is a saddle point with asymptotes
in the direction of the r,s axes. P6 is always a node and is degenerate
if k= j+1 (i.e., 7 = 5/3 spherical, 7 = 2 cylindrical). For k > j+1
the major axis, 1i.e., the direction of all the integral curves except for
one at right angles, is in the r-direction and for k < j+1 in the
s-direction, For PS there are two possibilities., When it is above

r = 145 it 18 a node and a saddle when below, the transition occurring
through its merging with Pz or P3 on r = l+s. Except in the special
case k = j+1 the points PZ’PB separate into a node and saddle or saddle
and node, respcctively, for Qa slightly greater than ak' When they
coincide with Q= o they form a confluence of a node and saddle. This
type of singular point is not a simple one. In investigating the behavior

of the curves near such a point it is necessary to include second order

- s i L 2
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terms in the numerator and denominator as the discriminant of the coeffic-
icnts &0 the {lisil urder terms vanisnes, and to tirst order the solution
obtained 1s a straight line. Fotr such a second order rRingular neint the
sigrificant variations occur on parabolas. For a first order node or

saddle the field of curves may be determined by finding the asymptotes

and the lines on which the curves have zero and infinite slope, For a
sccond order singular point the latter two lines and the asymptote between
them are parabolas and the relative positions of the curves are the same

on either side of the point (in the first order case the positions are re-
versed) resulting in a naddle, This situation is exhibited graphically

in Fig, 1. 1In the special case k = j+l1 there is a triple coincidence

of P2, P3 and P5 when O = Qns resulting in a third order singular
point, so that the significant variations take place along cubic curves,

The position of these differs on either side of the point and the siCquion
is geometrically similar to the first order case, except for the scale in-
volved. Such a point may be either a third order node or saddle. Evidently
higher order singular points will be geometrically similar to the first
order type of singular point (node or saddle) or the second order type
(naddle), depending on whcther the order is odd or even.

The values of Q for which these transitions just discussed occur are
tabulated in Table I, For k < j+l the point P3, which is a node when
it first appears, changes to a spiral, in which case no regular solution
through it is possible. However, the actual solution was found to pass
through P2 in ali cases, Through a first order node or saddle there are
two regular solutions. In the case of a saddle these are the asymptotes,

which are the only two solutions passing through the actual point. For a

node one of the two is the minor axis, i.e., the one solution not having
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the same slope ag all the others at the point, but the other is one of the
remaining curves and hemse 43 1555 Jistinguishable. 1In all cases the actual
solution was through the major axis of Pz, and this wse found to be the
only possible solution. No transition from Pz to P3 occurs as it does
in tha case of a gas (Welsh, 1966). Also the argument given in that pub-
lication that no uniform collapse (@ = 1) {8 possible appiies here to the
casc of water, since the flow behind a uniform shock is homentropic and the
equations of motion for gas and water are identical. This contrasts with
the situation found by Hunter (1960,1963) for cavitation in water. An
accelerating collapse exists in a certain range of 7, a uniform one in a
different range, the latter being singular at the cavity front for certain
discrete values of 7.

The appropriate integral curve representing the actual solution in &
given physical solution starts at the shock point (D,-E), crosses
r= l+8 at Pz, and then runs into PA(O,O), with time increasing through-
out this path, Pa corresponds to the line t = O in the physical plane,
and the solution must coniinue beyond Pa. The integral curves are syuwmetric
about r = 0, except for a change in direction of increasing time due to
the change in sign of s, Thus the integral curve passes through Pa
smoothly, the points of the curve beyond P& corresponding to lines ¢ > 0,
i.e., expanding lines in the flow behind the shock. However, the curve
heads towards the singular line r = 1-s, corresponding to a positive
characteristic in the flow, which indicates the presence of a reflected
shock wave traveling along & = constant > 0. The solution is represented
by a portion of this curve in the region 8> 0, r < l-s, but jumps to
some other curve above r = l-s, A condition on the flow behind this re-

flected shock is that the fluid velocity be zero at the center, i.e.,
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u=0 on R= 0. Hence r is finite here, but since ¢ 1is finite =

is infinite., 1t will now be secen that this information is sufficient to

determine the integral curve which satisfies these conditions at R = 0,

by examining the singular points of (3.3) at infinity.

Here we are interested in the region 8 > 0, There are three singular
points on s = 4o at 1 = e, g%%i%% . The first two are nodes (half-
nodes) and the one between them is a saddle (half-saddle), so that all
curves, save one, approach cither v = *o» as 5 - @, The asymptote through
the saddle point is the only curve which has a finite value of r for
s = +o and so represents the flow behind the reflected shock, The jump
from this curve to the one describing the flow ahead of the reflected shock
is determined by the conservation equations. In this way the value of ¢
on the reflected shock can be evaluated. This has not been done here.

This type of reflection occurs when the shock speed is singular and
its curvature is infinite. If there 18 a symmetrically placed solid spher-
ical or cylindrical boundary causing the shock to be reflected before its
final collapse then this type of reflection is plane in nature, provided

the radius of the boundary is large in comparison with the shock width,

4. THE PERTURBATION OF THE SELF-SIMILAR SOLUTION !
The self-similar solution is valid for p > B, which 15 fuirly re-

strictive, and presumably means that it is valid for a collapsing shock

wave in water for a much smaller neighborhood of the collapse point than

in the case of a gas. Here we shall consider the perturbation on the self-

similar solution due to taking B into account to first order, The pertur-

bations are analogous to those due tc the counter-pressure ahead of a

[ 4
collapsing shock wave in a gas (Welsh, 1966), the perturbations being of

R-2+<2/a) .

relative order

i
t
;
?
¢
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The form of the solution is now

u = Eéﬁ). Rl-(l/0)+?(§z g+ (1/2)

c - i) R1-(1/a>+§_;(g)_a-1;(1/a)

and the equations governing thesc perturbations are

E 1‘1‘; d—' -
( s) aF (rks) b,
g (1 'r';‘s) g—g (Ftk's—) = a+

where
a, = ¥ Jo(r&+rd) + (1-vhs) (Fekd) + (1-0) (k-1)(rE-r3)
+ —’i;— b, - (r2s)(rtks) ,
l-r+s

and ¢ may be climinated as previously by considering r, T, 8 to be

functions of s
(1-r-5)b_(r'+k) = (1-r+s)b+(r'-k)
a,(r'tk) = b (F'+k) (4.1)
a_(r'-k) = b_(T'-k)
where ' = d/ds
As is the case in the basic self-similar solution the boundary condi-

tions are obtained from the regularity conditir at s = 8, and the con-

servation equetions at s = -E, Since the displacement of these lines from

BT MVAT Y
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their positions in the self-similar flow gives rise to terms of the same

order as the perturbations, it is necessary to take into account theur dis- ‘

placements when applying boundary conditions on these lines.

In the basic flow the lines are
g - 'l Py g - gl

and in the perturbed flow

E = -1 + p R-ZF(Z/D), , b=t L+ R-2+(2/0),

We are mainly interested in the value of P.

The boundary conditions zt the shock are obtained by solving the con-
servation equations with €, taken into account to first order. With the
problem expressed in terms of u and ¢, P does not appear explicitly

and we have

.

u = DU-D' U-l

c = EU+E' UL
where
g o 7721 o2 D' e 2 2
»
2(7+1) ¥2r (7-1) ° "1 e

and U = - RE/D (g g g/,

Hence at . = -E we have

F(-E) = %[jm-zﬂ_-gmuu._;. ) _za]_ .

-1 4.2)

5(-E) = -ﬂ;——[jau+a] - E'

3-2a 7+1
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The value of c02 is given by

9 7(p6+B)
c = =
S o
o
and in general
coz = %E .
o

In the calculations the value unity will be used for coz, the solution
in a given case being given by the appropriate multiple of this solution.
The boundary conditions at g = 8, due to the solution being reg-

ular there, are nbtainedlas follows, This line is a characteristic so

that, on it
4R = y-c
dt

and hence

%I pi-(1/@) _ 3;za 5 r-1H(1/@) i ro;so gl-(1/@)
1

1
d_(x ' Ty -5, -
' {5d;(a"é">§ el L
. 1 1

so that

(4.3)

b _ (r,~1)
T -5 o1
r s, = -{1 + E;??;IET‘ 5 - (3-20) &

The regularity condition is obtainable either by application of the charac-
teristic condition on £ = ;1 or else by observing that the first of Eq.

(4.1) implies

B 1)
*
.
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b = 0 . where o denotes the value at s = 5,

which is

ja(r°§;+?;.°) + (l_a)(k-l)(roig-?oso)

(rl-k)b

- - ot - =
" (Fgm8y) Zﬂo(rlxij - ("8 ) (x ks ) = O L (4.4)

Hence ?6, E; are known in terms of B,

Let us take any trial value of &, 5(0) say, and suppuse that the
values of T, 5 at s = -E thus obtained are denoted by Fh(o), Eh(o),
respectively. Since the system is linear any multiple of this solution is
also a soluticn of the differential equations. We require that a multiple

X of this solution satisfiles (4.3), i.e.,

- A, B-D

= (o)
XrH 1

(4.3)

xEﬁ(°) ~ A, P-E

in which X, P are unknown. Thus we can evaluate P and also X 1if it
is desired to tabulate the solution (this is not done here).

The application of Whitham's rule, that the flow variables at the
shock, & = -1, satisfy the characteristic condition at § = ;1, gives

a simple algebraic formula for the approximate evaluation of B

p = DE-ED _ (1-k)(D'EHDE')
W 2DE 2(D+E) (D+KE)

Howewver, one cannot expect this approximation to have much accuracy.




20

TR

The cvalaation of P by this method i5 extremely simple due to the
fact that it is entirely aleebraic. The arheme apnlfad ¢tn avslnatas AR ;
exactly (Welsh, 1966) could also be applied here. However, this involves i
the exact integration of the system (4.1). Instead of doing so it is pro-

posed to apply an approximate algebraic method, the accuracy of which may

ik B -t i 04 L

be gauged by comparing the results of this method to the gas case with the
exact values. In theory, ote could develop the exact regular sc¢lution of
(4.1) as a power series about s = 5o0 although the algebra involved be-
comes impossible after the second terms, whose values are needed for the
exact method. We shall make use of the fact that the range of integration ; i
is quite small, of order 0.2, and evaluate the series sclution only as far
as the second term, of order s = 5" In other words, we shall evaluate
(o) (o)

and replace T, (%, EH<°) on the left hand side

Tis Sy for s = s
of (4.5) by
=) | =) _ =9, _
T, T, + T, (sH so)

Eh(o) = E;(°> + El(o)(su-so)

and denote the value of B 8o obLtained by Bl (the first order solution). i

The less accurate, zero order solution Bo will also be found by truncating

the series after a single term so that ?h(o), Eh(o) are replaced by ;;(o)’
E;(o), respectively.

The values of &o, Bl, 6w are given for 7 = 7, j = 1,2 in Table II

along wich the entropy varying case for 7 = 3 (Welsh, 1966),

5. THE APPROXIMATE SOLUTION TO THE COMPLETE MOTICN

The work of this section arises from the work of Chester (1954),

Chisnell (1957), and Whitham {1958}, on plane shock waves propagating along

o —— T TR
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a tube of varying cross-scctional area A. Evidently A = Rj, j=1,2,
rcorreoponds §0 wedge aud cone-shaped tubes and hence to complete cylindrical
and spherical shock fronts. The method empinyed hy thess asuthors, which is
in effect to apply Whitham's rule taking complete account of the stute ahead
of the shock, and so is nor restricted to strong shocks, gives good agreement
with the numerical solution of the complete system of partial differential

equations obtained by Payne (1957).

The characteristic condition is
1 due dr
du - kde -y cdp + u-c R

where the ¢ term is omitted for water,

2c° 1
Ry Mo y)

c
¢ = - GibH J(n-o-0)-1W42)  , stnce M= it< 0.

This results in the formula

JdR 2M dM
== L0 e )
R Me-1 K(M)

for the shock propagation. If we denote K(M) for a gas by K(o)(H),

then Chester's formula is
2
2 2(M°-1) } { 1 1
<l + 1+ 2=+ 2%/
k( y { xy M2 ] (5.1

where x = (7-1)H2+2

y = 27M%-y41

and the formula for water in which ¢ 1is neglected is
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2 . {sz-l }{1+_1_+z_zr£11. (5.2)
x{ ) Vxy W M Ny }

In the limit M- 1, for weak shocks, K- 1/2 in both cases for all

7, so that the integral for M 1is
M-1 « RI/2

the law for acoustic propagation.

In the limit a3 M — « the Integral
M o« gp-/DK,

8o that K = (l/qw)-l. spherical case.

Graphs of K(o)(u) and K(l)(M) are given in Fig. 2 for several cases,
the one most relevant to the present work being K(I)(M) for 7 = 7, These
results give an idea of the effect of neglecting entyopy variation, which
is substantial for 7 = 1.4, but decreases as 7 increases, and is not
nearly so great for 7 = 7, For a given 7, x(l)(u) < K(o)(M) for all
M, 8o that the entropy being neglected causes the shuci. to accelerate more
rapidly. K is mainly monotonic, increasif} for large 7 and decreacing .
for small 7. For 7 = 2, Kw<1) = 1/2 and K(l)(H) varies vgryrzi&g\é;“

so that
w2 -1 « RI/2

is a very accurate'approximation for all M,
The 1esuits also relate to the propagation of a shock wave in a tube
of varying cross-section, the general area charge dA/A replacing the

term jdR/R.
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6. THE SPHERICAL AND CYLINDRTCAT SuQCY TUBD

L]

The self-gimilar solution for the final stages of the collapzz of an
imploding shock wave is independent of the means by which the shock is
initliated, except for scaling factors. This also appiies to perturbations
to the self-similar solution obtained by taking account of the pressure
ahead of the shock.

Here we shall consider the initial propagation of the shock wave with
the initial state of a spherical pressure discontinuity separating two uni-
form regiona. The appearance of the initial radius of tlie aphere T, as
a parameter means that the flow is non-similar, However, in the liwmit as
the instant of release is approached, the flow is independent of r, and
is given by the classical solution for the one-dimensional shock tube,
caused By the release of the plane diaphragm separating two uniform media
at different pressures. This solution is self-similar. The only parameters
have the dimensions of pressure and density (r° neglected) so that the |
similarity variable #s r/t and the flow is uniformly expanding. In this
solution the pressure ahead of the shock is taken into account exactly
(for the final collapse the similarity variable is r/ta, 0<a<1l and
similarity demands that the pressure ahead of the shock be neglected).

As the shock propagates initially disturbances will arise in the flow
due to the departure from plane geometry, &nd these will cauge an imploding
shock to accelerate and an expanding one to decelerate. Thegse disturbances
will be treated as a perturbation on the basic, one-dimensional, self~
similar solution, to obtain the initial acceleration of the shock wave,

The analysis will be applicable to any combination of gas and water for
the two media, and aiso to sither the cphere being at a lower pressure than

its exterior or the reverse situation. Since it is known that the final
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collapse rate is singular. a serics obtained as a parturhatinn will rar.

tainly not be valid up to the moment of collapse, and can only describe

the initial motion (i.e., for smali values of [r-ro}/ro).

The representation of the one-dimensional shock tube flow, with r = r,
as the diaphragm position is shown in Fig. 4. For this diagram the high
pressure region 18 r < e The gas in the lower pressure region is com-
pressed through a shock wave and that in the high pressure regicn is
expanded through a oimple wave. The regilons 0,4 beyond the influence of
these waves are in the initial stationary states. The regions 2,3 are
in uniform motion with the same pressure and fiuid velocity. The contact
front separates the two media. The region 1 is a point-centered simple
rarefaction wave,

In the one~dimensional system this flow would persist for all time in
the absence of any dissipation. The disturbances on this flow due to a
spherical or cylindrical geometry will start from >t = 0 and will be small
in the initial stages. These disturbances will travel along characteristics,
so let us consider the overall picture of the disturbances. Consider first
the fluid in the high pressure region x < LI i.e., the regions 0, 1, 2,
No disturbances can propagate in the region O, which remains unifoxm.
Also the path of the last characteristic ¢f the simple wave, separating O
and 1, 1is not disturbed, In the éxpansion wave, reglon 1, there will be
one degree of freedom for each family of characteristics along which dis-
turbances may propagate. By a degree of freedom we mean an arbitrary
constant in the general solution for the region, and these constants which
arise wil'l be determined from appropriate boundary conditions. In any
region thare are three famiiies of characteristics, c(t) and c(o)

defined by d/dt = u t ¢, d/dt = u, respectively. Thus in any region
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there will be at most threce degrees of freedom. There can be no entxopy
disturbance in the simple wave, so that there is no degree of freedom
associated with the c(c) characteristics, i.e., the particle paths.

The negative characteristics are intersecting straight lines through
rEr, t = 0. In the basic flow this point 1is singular as the character-
istics intersecting here have different values of the characteristic vari-
able, Since all perturbations must be zero at t = 0 and all these lines
intersect at t = 0, it follows that there can be no disturbances propa-

-)

gating along c' ‘. Hence there is only one degree of freedom in the
simple wave due to disturbances along c(+), and this will be determined
by the condition that it is zero on the last characteristic of the simple
wave,

There is no entropy disturbance in region 2 but there will be disturb-
) ()

ances on and c¢' ‘, the former coming from the simple wave and the
latter from the shock. The solution in this region has to be matched with
that on the first characteristic of the simple wave. This condition deter-
mines the constant associated with c(+) in 2 to that of c(+) in 1

as the disturbances propagating along c(') in region 2 do not enter
into this matching,

Thus the motion of the gas to the left of the contact front can be
described except for the degree of freedom associated with c‘f) in region
2, which will be determined by matching this solution with that for the
gas initfally in r > L along the contact g;;ﬁt._

The region 4 ahead of the shock is unperturbed, However, the path
of the shock itself will be altered, causing disturbances along all three
families of ch;ractetistics in the region 3 behind it, The conservation

equations across the shock serve to determine the boundary values of the
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solution in terms of the change in shock speed, so that the flow {n this
eion {2 rupresaibie in terms or one unknown, the change in shock speed.
There are two conditions to be marisfiesd at the contact {ront, the

continuity of pressure and fluid velocity. Since the boundary values to
the left and right of the front each contain one unknown, these two con-
ditions will determine the flow completely.

The characteristics along which disturbances propagate are sk?tched
in Fig. 3. The problem is greatly simplified if the disturbances propagating

along c(+)

in region 3 are neglected, as the propagation of the shock
wave is then determined simply by examination of the boundary values at the
shock, without reference to the motion behind the shock. This situa£ion
would arise if there were no simple wave and the regions 0,1 were identi-

cal to 2. An extensive region of uniform flow behind the shock cannot arise

in an entirely spherical or cyliindrical geometry. However, it describes a

" uniform plane shock wave traveling in a one-dimensional tube and meeting an

appropriately varying area change. This is the case studied by Chester
(1954), Chignell (1957), and Gundersen (1958). For a very weak shock, which
) take a long time
to do 8o and hence their effect will be increasingly small for increasingly
weak shocks. The simplest derivation of the formula for the shock propaga-
tion neglecting rhese disturbances is that of Whitham (1958), and it will

be shown that neglecting them in the present analysis reduces to his formula.

The release of a pressurized sphere in air has been studied by Friedman (1961),

who uses Whitham's rule for the propagation of the main shock wave.

Equations of Motion
The equations of motion for the spherically or cylindrically symmetric

flow, in the absence of dissipation due to hea: conduction, are those given
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previously in Section 3. Defining the characteristic variables 4
A
1 E
dt - 2":7-1' ;
these are
al + (ue)at - -T-"Luc+l—c2¢
t T 2r 2y T
(6.1)

D+ W, = 0

The basic self-similar flow is given by the above equations with the geometry
term involving j omitted, the variables being functions of (r-ro)/t only,

The perturbations to be evaluated here are essentially due toc the effact of

this term.

The basic solution is of the form

3 £
a = a o

9 = 9,0 . Aom =2

and also Uo ¥ constant. Let us expand about this solution in the foim

of = @ %) + e *0) + ezaz‘“(x) e (6.2)
T~
Q
where € = ro

We shall be concerned with only the first order corrections, i.e., those with
suffix 1. Om gubstituting the variable, expanded in this form, into the

equations of motion and equating like powers of A, we obtain the equations

governing the basic flow
(K-uo)wo' = 0

3! ¢
(uoico-h)o% -
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and the equations for the perturbations
h(uOJA)Ql‘ +u9, + Xulwc' = 0 \
Mu te Met 4 Az et + (utc)at (6.4)
Y9%Co 1 \4;5€19% Yo o’ *
- ;_j_uc +c—° {2ne,0 ' + c_ O\pltp,))
2 oo 27 1% o 1M1 .J

The simplicity of the equations (6.3) is due to the combination of
self-gimilarity and characteristic propagation. The first is the statement
¢° is constant except for a possible discontinuity on A = Uy i.e., the
particle path through the point of initiation in the r-t plane. Thus the

right hand side of the second is zero, and this becomes
et
(uoico )ag = 0

which atates that abt is constant except possibly on an appropriate char-
acteristic through the point of initiation. Here, in the case of the point-
centered simple wave, it is possible for there to be an intersecting family
of such characteristics, giving a region in which the first factor equated
to zero is the appropriate solution of this aquation., For all other regions,
which are uniform, aBt = constant is the sclution. The characteristics of

the system (6.4) are evidently the three characteristics of the flow.

The Simple Wave _

Here we shall solve the system (6.3) for the familiar sclution for a
point-centered simple wave and hence the system (6.4) for the perturbations,
In these equations a double sign + was used for simplicity, the upper

+)

sign referring to the ¢ equation and the lower to the c('). In order
to develop the two cases of high pressure inside and outside the sphere

simultaneously & similar notation will be used. The former will be referred

A




to as case +, and will be given by the upper signs in the equations. and
the later, case -, will be given by the lower signs. Thus the two signs
tefer here to different physical situations, whareas, as used previously,
they refer to different equations describing the same physical situation,

The basic simple wave is

U +¢ -A = 0

[} [+]
t +
do - GQR (6.5)

cpo = constant

The solution for ®, is

Itl
1

7-
9, = % (2c ¥ (-1A) » A = arbitrary constant
R " % in region 0

and the equations for a1+ are
- 8
, +!
2)\(2c°R-(7-;)M 0 Acon+(3-7)>s o
0 22 A(7+1) u1+c1 (6.6)
+
%
. 2 - -
I T T A W 7-1
741 O pd{2e F(r-1N) + 35 {2¢ p +(-DA}
and for o
~ -
N
0 2 (74N al
-z;.{zc°R+(7-1)§.J ‘  _0  - (3-7)A-ac°R uy e, 6.7
@

-y
o Ote (26 g +O-DA) + &5 (20, F7-100)7
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In each pair of equations one is algebraic so that their salution has only
one arbitrary constant, This is due to there being no disturgances propa- '
l gating along the rectilinear, intersecting characteristics, the similarity
. approach ruling out such disturbances automatically.
The solution of the differential equations which appear in (6.6) and

- (6.7) may be expressed as

-] - oR -
Ml e ——d - eSS
32 . S (6.8)
1 2(7-1)

' A A -
: e Pt

where {+} = (zcoR F-DN) , 743,53, |

and Kli are arbitrary comstants.

The algebraic equations may be combined as

x[%ﬁiﬁhJ-tﬁampm (6.9)

Since the perturbed flow Ls homentropic A may be set equal to zero
in (6.8). The flow i3 continuous across the last characteristic of the

simple wave separating the regions O and 1, i.e., A = % Sy so that

Rl
u, €, must be zero on this line. The equations (6.8), (6.9) for U, €

‘are singular only in the case 7 = 1, The right hand side of (6.9) is zero

1

on A= 4c 80 K is determined by equating the right hand side of {

oR’
(6.8) to zero., This gives . 4

" . 7-3 3-5 i 4
232D 201 !
1 (37-5)(3-7)

(6.10)

The solution in the simple wave i{s now determined completely by (6.8), (6.9),

with A= 0 and Kt given by (6.10).

L 2
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in the basic simpic weve the first characteristic is the iline om whicr
the value of the fluid velocity is the same as that behind the shock, u.,

say. On this line

c = -?-Llu

() coR 2 8

The Uniforin Regions 2 and 3

In the case of a uniform homentropic basic flow the equations (6.4)

governing the perturbations are
- ¢ -
A(uo A)cpl + u°cp1 0

a' t _ 14 So '
K(uoico-)s)al + (uoico)al + 2 Yoo + T (Mpl wl)

e -

where u_ , ¢ are constant.
o' "o
The solution of this system is

}\.-uo
=A%

a {6.11})
- 3 Ac,
-+ 7 Yo% + 27

E
1

a0 + x'.*(u tc_-A)
o 0

)

The last term is constant on uoico-h «X, f.e., on ¢ » but the other

A

- terms are not assoclated with characteristic propagation as written. The

(o)

. entropy term is associated with ¢ 80 we can write it as

Acoz Ac Aco
o " tE Ot (e

4
and the first term may be written
1 -
3 ue A ] u tco A

3 o0 ]

oo © 2 u e +Euoco—|.—x:tc
o o o o
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so that (6.11) may be expressed in the form

T
e

>

uch
0 0
u *¢

0 o

C
+ 3-7-9 O-u)) + x*(uo:tco-x)

e

b4 =
Mt o= d

Ny

\
(6.12)
|

where in the last equation the terms are respectively the geometry modifi-
cation, the entropy disturbance along c(o)' and the disturbance traveling
along c(t). By neglecting the disturbances reaching the shock from bahind,

i.e., by setting the appropriate K =zero, Whitham's formula is obtained,

A retained for a gas and omitted for water.

The particles in the region 2 batween the simple wave and the contact

front do not pass through the shock, s¢ that A = 0 in region 2, and

3 uocék
Ayto= 45 e
o o

+
+ Kz (uotco-x)

vhere Kzt are both non-zevo.

This flow has to match identically with the peiturbed flow in the simple
wave on the first characteristic of the simple wave separating the two
regions, which determines one of Kzi. The remaining Kz will be deter-
mined by the conditions nt the contact front. Here

A = u

s

so that
% =3 Y% ig *
a1 + 2 T % : 3 K2 (6.13)
o o o
- - iy dud §
where u Ug» ro SoR + 7 Y .

The solution in the region 3 bletween tie contact front and the shock

is

Ay
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Mpl = A(AN-u)
(0.14)
+ - uocok Aco
AQ. m 4 T ==t o= (A=u ) + K. (u tc =A)
1 Z uo:tc° rys 3

If the medium in this region is gas then A 18 non-zero and is datermined
by the cce.servation equations at the shock. For water, in which the effect
of entropy variations is neglected, A will be zero. The corservation
equations at the shock, if.e., on A = Uo' give three equations relating
and U

a, K * so that the solution in this region is expressible in

e 1°
termg of the single unknown Ul' The boundary values at :he contact front
are given by (6.14) with A = u . The physical situations are here dis-
tinguished by the fact the Ugs Uo are negative for the impleding shock
and positive fur the exploding shock (co being always positive).

The continuity of fluid velocity and pressure at the contact front

give two equaticns involving the unknown Kz and Ul' No calculations

have been performed as yet.
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v varying 3 2

| = Entropy 7 k]

©. Viemmeem-y -4

TABLE II
pw at» f,1 seucl:
0.6687 0.5718 0.9750 1,0435
varying 3 1 0.6667 0.5570 0.7629 0.7738
i
conatant 7 2 0.62589 1.6523 0.7733
constant 7 1 0.6269 1.6198 1.0507
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